26.04.2024

Распределение заряда в заряженном проводнике. Распределение зарядов на проводнике Распределение зарядов и поля в проводниках


Электрическим током называют направленное движение электрических зарядов. Для передачи электроэнергии используют проводники, в основном это металлы. Примером такого материала является медь и алюминий, а из неметаллов – графит. У протекания тока есть одна интересная особенность, а именно — распределение зарядов в проводнике по его объёму. Этот вопрос мы и рассмотрим в статье.

Носители зарядов и их движение

Проводник — это вещество, в котором носители начинают перемещаться под воздействием малейшего внешнего электрического поля. Когда внешнее поле отсутствует, поля положительных ионов и отрицательных электронов компенсируют друг друга. Подробнее мы рассматривали смежный вопрос и сравнивали в статье, опубликованной ранее.

Рассмотрим металлический предмет, который находится в электрическом поле. Перемещаться под воздействием внешнего поля носители зарядов начинают из-за того, что начинают действовать кулоновские силы на носители заряда. Причем на положительные и отрицательные носители направление действия этих сил лежит в разном направлении. Движение прекращается в том случае, если сумма напряженностей внешнего и внутреннего полей станет равна нулю, то есть:

Eрез=Eвнутр+Eвнеш=0

При этом напряженность поля равна:

E=dФ/dt

Если напряженность равна нулю, то потенциал внутри тела равен какому-то постоянному числу. Это станет ясно, если выразить из этой формулы потенциал и произвести интегрирование, то есть:

Положительные ионы и электроны из всего объёма тела устремляются к его поверхности, чтобы скомпенсировать напряженность . Тогда внутри проводника напряжённость электрического поля становится равной нулю, так как оно уравновешивается носителями зарядов с его поверхности.

Интересно! Поверхность, на которой во всех точках присутствует одинаковый потенциал, называют эквипотенциальной.

Если рассмотреть этот вопрос подробнее, то когда проводник вносят в электрическое поле, положительные ионы движутся против его силовых линий, а отрицательные электроны в том же направлении. Это происходит до тех пор, пока они не распределятся, а поле в проводнике не станет равным нулю. Такие заряды называют индуцированными или избыточными.

Важно! При сообщении зарядов проводящему материалу они распределятся так, чтобы было достигнуто состояние равновесия. Одноименные заряды будут отталкиваться и стремится в соответствии с направлением силовых линий электрического поля.

Отсюда следует, что работа по перемещению носителей зарядов равна нулю, что равняется разности потенциалов. Тогда и потенциал в разных участках проводника равняется постоянному числу и не изменяется. Важно знать, что в диэлектрике чтобы оторвать носитель заряда, например электрон от атома, нужно приложить большие силы. Поэтому описанные явления в общем смысле наблюдаются на проводящих телах.

Электроемкость уединенного проводника

Для начала рассмотрим понятие уединенный проводник. Это такой проводник, который удален от других заряженных проводников и тел. При этом потенциал на нем будет зависеть от его заряда.

Электроемкость уединенного проводника – это способность проводника удерживать распределенный заряд. В первую очередь, она зависит от формы проводника.

Если два таких тела разделить диэлектриком, например, воздухом, слюдой, бумагой, керамикой и т.д. – получится конденсатор. Его емкость зависит от расстояния между обкладками и их площади, а также от разности потенциалов между ними.

Формулы описывают зависимость емкости от разности потенциалов и от геометрических размеров плоского конденсатора. Подробнее узнать о том, вы можете из нашей отдельной статьи.

Распределение зарядов и форма тела

Итак, плотность распределения носителей зарядов зависит от формы проводника. Рассмотрим это на примере формул для сферы.

Предположим, что у нас есть некая металлическая заряженная сфера, с радиусом R, плотностью зарядов на поверхности G и потенциалом Ф. Тогда:

Из последней выведенной формулы можно понять, что плотность приблизительно обратно пропорциональна радиусу сферы.

То есть, чем более выпуклый и острый предмет, тем большая в этом месте плотность носителей. На вогнутых же поверхностях плотность минимальна. Это можно наблюдать на видео:

Применение на практике

Если принять во внимание вышесказанное, то стоит отметить, что ток по кабелю протекает и распределяется, словно по внешнему диаметру трубы. Это вызвано особенностями распределения электронов в проводящем теле.

Любопытно, что при протекании токов в системах с током высокой частоты наблюдается скин-эффект. Это и есть распределение зарядов по поверхности проводников. Но в этом случае наблюдается ещё более тонкий «проводящий» слой.

Что это значит? Это говорит о том, что для протекания тока аналогичной величины с сетевой частотой в 50 Гц и с частотой 50 кГц в высокочастотной цепи потребуется большее сечение токопроводящей жилы. На практике это наблюдают в импульсных блоках питания. В их трансформаторах как раз такие токи и протекают. Для увеличения площади сечения либо выбирают толстый провод, либо мотают обмотки несколькими жилками сразу.

Описанная в предыдущем разделе зависимость распределения плотности от формы поверхности на практике используется в системах молниезащиты. Известно, что для защиты от поражения молнией устанавливают один из видов молниезащиты, например громоотвод. На его поверхности скапливаются заряженные частицы, благодаря чему разряд происходит именно в него, что опять же подтверждает сказанное об их распределении.

Это все, что мы хотели рассказать вам по поводу того, как происходит распределение зарядов в проводнике при протекании тока. Надеемся, предоставленная информация была для вас понятной и полезной!

Материалы

Изучение электростатики проводников затруднено тем, что распределение электрического заряда по наружной поверхности одного и того же проводящего тела в разных условиях может оказаться совершенно различным. Исключение составляет случай распределения электрического заряда по поверхности уединённого проводника в бесконечном однородном изотропном пространстве. Это распределение зависит только от формы граничной поверхности проводника. Ниже для простоты изложения будем рассматривать уединённые проводники в вакууме. У математиков задача о распределении электрического заряда по поверхности проводника носит название «задача Робена». Различают объёмный (трехмерный) случай и двумерный случай задачи Робена. В двумерном случае в качестве проводника рассматривают бесконечный цилиндр произвольного поперечного сечения. Вне проводника потенциал электростатического поля удовлетворяет уравнению Лапласа, на поверхности проводника потенциал обращается в нуль, а интеграл по поверхности проводника от нормальной производной потенциала пропорционален величине суммарного электрического заряда. В плоском (двумерном) случае для решения задачи Робена эффективны методы теории функций комплексного переменного, в частности, метод конформного отображения.

Допустим, что проводник является эллипсоидом, уравнение граничной поверхности которого описывается в декартовой системе координат уравнением

Известно (Ф.Франк, Р.Мизес. Дифференциальные и интегральные уравнения математической физики. – Л.-М.: ОНТИ. Гл. редакция общетехнической литературы. – 1937.-998с., стр. 706) распределение поверхностной плотности электрического заряда по поверхности проводящего эллипсоида:

. (2)

Из этого соотношения следует оценка

где т.е. поверхностные плотности электрического заряда в точках пересечения осей эллипсоида с поверхностью. Если размер а очень велик, а размеры b и c малы, то становится очень большой. Вспомним, что эта величина пропорциональна нормальной составляющей напряжённости электростатического поля вблизи поверхности проводника. Электрический пробой зависит от величины напряжённости электростатического поля. Получается, что пробой происходит в окрестности «острого» конца вытянутого в одном направлении эллипсоида.

Для проводящего шара имеем

, , (4)

распределение поверхностной плотности электрического заряда является равномерным.

Неравномерность распределения электрического заряда по поверхности произвольного проводника является причиной погрешности, возникающей, например, при элементарном, упрощённом расчёте ёмкости конденсатора конечных размеров. Строгий учёт «краевых эффектов» иногда представляет собой довольно сложную задачу. В частности, вывод соотношения (2) требует введения эллипсоидальных координат, умения записать уравнение Лапласа в этих координатах, построить решение полученного уравнения в частных производных с переменными коэффициентами (т.е. получить распределение потенциала электростатического поля вне проводящего эллипсоида), вычислить напряжённость электростатического поля в окрестности граничной поверхности эллипсоида и, наконец, вычислить величину поверхностной плотности электрического заряда на поверхности проводящего эллипсоида. Только в редких исключительных случаях решение задач рассматриваемого типа можно получить в замкнутой аналитической форме, в остальных случаях решение получают с помощью численных методов, используя специальное программное обеспечение современных компьютеров.

Под словом «проводник» в физике понимается проводящее тело любых размеров и формы, содержащее свободные заряды (электроны или ионы). Для определенности в дальнейшем будем рассматривать металлы.

Если проводнику сообщить некоторый заряд q, то он распределится так, чтобы соблюдалось условие равновесия (т.к. одноименные заряды отталкиваются, они располагаются на поверхности проводника).


1.
Если заряды проводника находятся в равновесии, то равнодействующая всех сил, действующих на каждый заряд, равна нулю:

т.к. а Е=0, то

в любой точке внутри проводника Е=0.

2. Т.к.

во всех точках внутри проводника потенциал постоянен.

3. Т.к. при равновесии заряды не движутся по поверхности проводника, то работа по их перемещению равна нулю:

т.е. поверхность проводника является эквипотенциальной.

4. Т.к. линии вектора перпендикулярны эквипотенциальным поверхностям, линии перпендикулярны поверхности проводника.

5. Согласно теореме Гаусса

Если S - поверхность заряженного проводника, то внутри нее E=0,

т.е. заряды располагаются на поверхности проводника.

6. Выясним, как связана поверхностная плотность заряда с кривизной поверхности.

Для заряженной сферы

Плотность зарядов определяется кривизной поверхности проводника: растет с увеличением положительной кривизны (выпуклости) и убывает с увеличением отрицательной кривизны (вогнутости). Особенно велика на острие. При этом имеющиеся в воздухе в небольшом количестве ионы обоих знаков и электроны разгоняются вблизи острия сильным полем и ударяясь об атомы газа, ионизируют их. Создается область пространственного заряда, откуда ионы того же знака, что и острие, выталкиваются полем, увлекая за собой атомы газа. Поток атомов и ионов, направленный от острия, создает впечатление «стекания зарядов». При этом острие разрежается попадающими на него ионами противоположного знака. Возникающее при этом ощутимое движение газа у острия называют «электрическим ветром».

Проводник во внешнем электрическом поле:

При внесении незаряженного проводника в электрическое поле его электроны (свободные заряды) приходят в движение, на поверхности проводника появляются индуцированные заряды, поле внутри проводника равно нулю. Это используют для электростатической защиты, т.е. экранировки электро- и радиоприборов (и человека) от влияния электростатических полей. Прибор окружают проводящим экраном (сплошным или в виде сетки). Внешнее поле компенсируется внутри экрана полем возникающих на его поверхности индуцированных зарядов.

Покажем, что ~

Тема 4. Вопрос 3.

Распределение зарядов в проводниках.

Проводники в электростатическом поле.

При внесении незаряженного проводника во внешнее электростатическое поле на его поверхности появляются заряды. Явление перераспределения зарядов в проводнике при внесении его во внешнее электростатическое поле, называется электростатической индукцией (наведением зарядов, электризацией посредством наведения).

1) Если в поле внести незаряженный металлический проводник из двух контактирующих частей, на их поверхностях возникнут индуцированные заряды. Если эти части развести с помощью изолирующих ручек, то каждая часть окажется заряженной соответствующим зарядом (см. рис.). При этом напряженность поля внутри проводников всегда равна нулю.

2) Незаряженный проводник, внесенный в электростатическое поле искажает поле (см. рис.- линии со стрелками – силовые линии внешнего однородного поля; перпендикулярные им линии – это эквипотенциальные поверхности; ± - обозначены наведенные заряды).

3) Величина наведенного (индуцированного) заряда всегда меньше величины наводящего заряда. Только в случае, когда наводящий заряд находится внутри металлической полости, наведенный заряд оказывается таким же по величине, но при этом поверхностная плотность зарядов оказывается различной. На рисунке: точечный заряд окружен незаряженным металлическим полым телом. И внутренняя и внешняя поверхности сферические, но центры их смещены. На внешней поверхности индуцированный заряд распределяется равномерно, а на внутренней – сложным образом.

4) Наведенные заряды влияют на электрическое поле наводящих зарядов.

5). Индуцированный заряд возникает и на уже заряженном теле. Если рядом находятся два положительных заряда +Q и +q , они должны отталкиваться. Но наведенный отрицательный заряд на одном из зарядов может оказаться бόльшим, чем его собственный заряд, и заряды будут притягиваться друг к другу.

Электростатическая защита: Проводник или достаточно густая металлическая сетка, окружающие со всех сторон некоторую область, экранируют ее от электрических полей, созданных внешними зарядами.

Тема 5. Вопрос 1.

Электроемкость.

Все проводники обладают свойством накапливать электрические заряды. Это свойство называется электроемкостью. Количественная характеристика этого свойства также называется электроемкостью и обозначается С . Различают электроемкость уединенного проводника (собственная емкость), находящегося вдали от других проводников, и взаимную емкость системы из двух и более проводников.

Фарада – единица измерения емкости в СИ - является чрезвычайно большой величиной. Так, емкость земного шара примерно 7×10 - 4 Ф, поэтому обычно пользуются микро-, нано- и пикофарадами.

Собственная емкость зависит только от формы и размеров проводника и от диэлектрических свойств окружающей среды (вакуум, воздух, керосин,…) и не зависит ни от материала проводника (Fe, Cu, Al,…), ни от того, заряжен он или нет. Каждый уединенный проводник обладает «своей» емкостью, если, например, изогнуть кусок проволоки или сделать вмятину в шарике, их емкость изменится.

Вычисление емкости представляет собой сложную математическую задачу, и если проводник имеет сложную конфигурацию, то аналитически эта задача не решается.

Вычислим электроемкость уединенной сферы (шара) .

Тема 5. Вопрос 2.

Электроемкость.

Вычислим емкость плоского конденсатора – это две металлические параллельные пластины (обкладки) одинаковых размеров, разделенные слоем диэлектрика (вакуум, воздух и др.). Если расстояние между пластинами значительно меньше размеров пластин: d << L, H , поле между пластинами можно считать однородным. В действительности вблизи краев пластин поле неоднородно (см. рис., на котором показана половина плоского конденсатора, линии со стрелками – это силовые линии, без стрелок – эквипотенциальные поверхности). Учесть эти краевые эффекты трудно.

Тема 5. Вопрос 3.

Электроемкость.

Взаимная емкость также зависит от формы и размеров проводников и, кроме того, от их взаимного расположения. Система из двух проводников называется конденсатором в том случае, когда расстояние между ними достаточно мало, и электрическое поле (когда они заряжены) сосредоточено в основном между проводниками. Сами проводники при этом называют обкладками. Вычислить емкость такой системы можно для обкладок простей формы: плоских, сферических и цилиндрических (без учета краевых эффектов).

Цилиндрический конденсатор . Это два соосных металлических цилиндра, в промежутке между которыми – диэлектрик (вакуум, воздух и др.). Длина цилиндров-обкладок l , радиусы R и r (см. рис.). Если сообщить внутренней обкладке заряд +q , на внешней обкладке индуцируются заряды -q и +q , положительный заряд с внешней поверхности наружной обкладки уводится в землю. Поле конденсатора в основном сосредоточено между обкладками, если расстояние между ними (R - r) << l . Краевые эффекты не учитываем.

Тема 5. Вопрос 4.

Электроемкость.

Взаимная емкость также зависит от формы и размеров проводников и, кроме того, от их взаимного расположения. Система из двух проводников называется конденсатором в том случае, когда расстояние между ними достаточно мало, и электрическое поле (когда они заряжены) сосредоточено в основном между проводниками. Сами проводники при этом называют обкладками. Вычислить емкость такой системы можно для обкладок простей формы: плоских, сферических и цилиндрических (без учета краевых эффектов)

Сферический конденсатор . Это две металлические концентрические сферы, разделенные сферическим слоем диэлектрика. Если внутренней обкладке сообщить заряд +q , на внутренней поверхности внешней обкладки индуцируется заряд -q , а на внешней ее поверхности +q. Этот заряд отводится в землю за счет заземления (см. рис.). Поле такого конденсатора сосредоточено только между обкладками.

Тема 5. Вопрос 5.

Электроемкость.

Соединения конденсаторов.

Конденсаторы можно соединять параллельно или последовательно, или смешанным образом: часть параллельно, часть последовательно. При параллельном соединении емкость системы увеличивается и становится равной сумме емкостей. При последовательном соединении емкость системы всегда уменьшается. Последовательное соединение применяют не для уменьшения емкости, а главным образом для уменьшения разности потенциалов на каждом конденсаторе, чтобы не было пробоя конденсатора.

Введем более простое обозначение для разности потенциалов. Иногда U называют напряжением, это устаревший термин. Напряжение U = IR – это произведение силы тока на сопротивление (см. ниже – ток), а через конденсатор ток идти не должен. Если происходит пробой диэлектрика, конденсатор приходится выбрасывать.
запишем формулу для каждого конденсатора и для всей системы (заменив Dj ®U ); подставляя q в последнюю формулу, получим: С паралл =С 1 + С 2 Обобщим на случай 3-х и более конденсаторов параллельное соединение
емкость системы при параллельном соединении конденсаторов(i=1,2,…,n ) n - число конденсаторов

Тема 6. Вопрос 1.

Все вещества в соответствии с их способностью проводить электрический ток подразделяются на проводники, диэлектрики и полупроводники. Проводниками называют вещества, в которых электрически заряженные частицы - носители заряда - способны свободно перемещаться по всему объему вещества. К проводникам относятся металлы, растворы солей, кислот и щелочей, расплавленные соли, ионизированные газы.

Ограничим рассмотрение твердыми металлическими проводниками, имеющими кристаллическую структуру. Эксперименты показывают, что при очень малой разности потенциалов, приложенной к проводнику, содержащиеся в нем электроны проводимости, приходят в движение и перемещаются по объему металлов практически свободно.

В отсутствие внешнего электростатического поля электрические поля положительных ионов и электронов проводимости взаимно скомпенсированы, так что напряженность внутреннего результирующего поля равна нулю.

При внесении металлического проводника во внешнее электростатическое поле с напряженностью Е 0 на ионы и свободные электроны начинают действовать кулоновские силы, направленные в противоположные стороны. Эти силы вызывают смещение заряженных частиц внутри металла, причем в основном смещаются свободные электроны, а положительные ионы, находящиеся в узлах кристаллической решетки, практически не меняют своего положения. В результате внутри проводника возникает электрическое поле с напряженностью Е " .

Смещение заряженных частиц внутри проводника прекращается тогда, когда суммарная напряженность поля Е в проводнике, равная сумме напряженностей внешнего и внутреннего полей, станет равной нулю:

Представим выражение, связывающее напряженность и потенциал электростатического поля, в следующем виде:

где Е - напряженность результирующего поля внутри проводника; n - внутренняя нормаль к поверхности проводника. Из равенства нулю результирующей напряженности Е следует, что в пределах объема проводника потенциал имеет одно и то же значение:

Полученные результаты позволяют сделать три важных вывода:

  • 1. Во всех точках внутри проводника напряженность поля, т. е. весь объем проводника эквипотенциален.
  • 2. При статическом распределении зарядов по проводнику вектор напряженности Ена его поверхности должен быть направлен по нормали к поверхности

3. Поверхность проводника также эквипотенциальна, так как для любой точки поверхности

3. Проводники во внешнем электростатическом поле

Если проводнику сообщить избыточный заряд, то этот заряд распределится по поверхности проводника. Действительно, если внутри проводника выделить произвольную замкнутую поверхность S, то поток вектора напряженности электрического поля через эту поверхность должен быть равен нулю. В противном случае внутри проводника будет существовать электрическое поле, что приведет к перемещению зарядов. Следовательно, для того, чтобы выполнялось условие

суммарный электрический заряд внутри этой произвольной поверхности должен равняться нулю.

Напряженность электрического поля вблизи поверхности заряженного проводника можно определить, используя теорему Гаусса. Для этого выделим на поверхности проводника малую произвольную площадку dS и, считая ее за основание, построим на ней цилиндр с образующей dl (рис. 3.1). На поверхности проводника вектор Е направлен по нормали к этой поверхности. Поэтому поток вектора Е через боковую поверхность цилиндра из-за малости dl равен нулю. Поток этого вектора через нижнее основание цилиндра, находящееся внутри проводника, также равен нулю, так как внутри проводника электрическое поле отсутствует. Следовательно, поток вектора Е через всю поверхность цилиндра равен потоку через его верхнее основание dS " :

где Е n - проекция вектора напряженности электрического поля на внешнюю нормаль n к площадке dS.

По теореме Гаусса, этот поток равен алгебраической сумме электрических зарядов, охватываемых поверхностью цилиндра, отнесенной к произведению электрической постоянной и относительной диэлектрической проницаемости среды, окружающей проводник. Внутри цилиндра находится заряд

где - поверхностная плотность зарядов. Следовательно

т. е. напряженность электрического поля вблизи поверхности заряженного проводника прямо пропорциональна поверхностной плотности электрических зарядов, находящихся на этой поверхности.

Экспериментальные исследования распределения избыточных зарядов на проводниках различной формы показали, что распределение зарядов на внешней поверхности проводника зависит только от формы поверхности: чем больше кривизна поверхности (чем меньше радиус кривизны), тем больше поверхностная плотность заряда.

Вблизи участков с малыми радиусами кривизны, особенно около острия, из-за высоких значений напряженности происходит ионизация газа, например, воздуха. В результате одноименные с зарядом проводника ионы движутся в направлении от поверхности проводника, а ионы противоположного знака к поверхности проводника, что приводит к уменьшению заряда проводника. Это явление получило название стекания заряда. электрический ток проводник статический

На внутренних поверхностях замкнутых полых проводников избыточные заряды отсутствуют.

Если заряженный проводник привести в соприкосновение с внешней поверхностью незаряженного проводника, то заряд будет перераспределяться между проводниками до тех пор, пока их потенциалы не станут равными.

Если же тот же заряженный проводник касается внутренней поверхности полого проводника, то заряд передается полому проводнику полностью.

Эта особенность полых проводников была использована американским физиком Робертом Ван-де-Граафом для создания в 1931г. электростатического генератора, в котором высокое постоянное напряжение создается посредством механического переноса электрических зарядов. Наиболее совершенные электростатические генераторы позволяют получать напряжение величиной до 15-20 МВ.

В заключение отметим еще одно явление, присущее только проводникам. Если незаряженный проводник поместить во внешнее электрическое поле, то его противоположные части в направлении поля будут иметь заряды противоположных знаков. Если, не снимая внешнего поля, проводник разделить, то разделенные части будут иметь разноименные заряды. Это явление получило название электростатической индукции.

1. Электростатика -- это раздел физики, где изучаются свойства и взаимодействия неподвижных относительно инерциальной системы отсчета электрически заряженных тел или частиц, которые имеют электрический заряд.

Основание электростатики положили работы Кулона, хотя за десять лет до него такие же результаты, даже с ещё большей точностью, получил Кавендиш. Самую существенную часть электростатики составляет теория потенциала, созданная Грином и Гауссом.

2. Все вещества в соответствии с их способностью проводить электрический ток подразделяются на проводники, диэлектрики и полупроводники. Проводниками называют вещества, в которых электрически заряженные частицы - носители заряда - способны свободно перемещаться по всему объему вещества. К проводникам относятся металлы, растворы солей, кислот и щелочей, расплавленные соли, ионизированные газы.

Во всех точках внутри проводника напряженность поля, т. е. весь объем проводника эквипотенциален.

При статическом распределении зарядов по проводнику вектор напряженности Ена его поверхности должен быть направлен по нормали к поверхности

в противном случае под действием касательной к поверхности проводника компоненты напряженности заряды должны перемещаться по проводнику.

Поверхность проводника также эквипотенциальна, так как для любой точки поверхности


© 2024
deti-autism.ru - Здоровье в ваших руках