06.03.2024

Информатика моделирование движения дискретизация практика. Моделирование свободного движения автомобилей по двухполосным автомобильным дорогам. Вид и формы работы


Допустим, вы двигаетесь на велосипеде, и вдруг кто-то толкает вас сбоку. Чтобы быстро восстановить равновесие и избежать падения, вы повернете руль велосипеда в направлении толчка. Велосипедисты делают это рефлекторно, но удивительно, что велосипед может выполнить это действие самостоятельно. Современные велосипеды могут самостоятельно удерживать равновесие даже при движении без управления. Посмотрим, как этот эффект можно смоделировать в COMSOL Multiphysics.

Что мы знаем о самобалансировании велосипедов

Современный велосипед не очень сильно отличается от безопасного велосипеда — одной из первых конструкций, появившейся в 80-х годах XIX века. По прошествии более ста лет ученые все еще пытаются выяснить, за счет каких эффектов велосипед становится самобалансируемым. Другими словами, как неуправлемый велосипед сохраняет равновесие в вертикальном положении? Описанию движения велосипеда с помощью аналитических уравнений посвящено множество опубликованных работ. Одной из первых важных публикаций по этой теме была статья Фрэнсиса Уиппла, в которой он получил общие нелинейные уравнения динамики велосипеда, управляемого велосипедистом без использования рук.

Принято считать, что устойчивость велосипеда обеспечивается двумя факторами — гироскопической прецессией переднего колеса и стабилизирующим действием продольного наклона оси поворота колеса. Совсем недавно команда исследователей из Делфта и Корнелла (см. ) опубликовала всеобъемлющий обзор линеаризованных уравнений движения для модели велосипеда Уиппла. Они использовали свои результаты для демонстрации самобалансирующегося велосипеда. Их исследование показывает, что этому явлению нельзя дать простое объяснение. Сочетание факторов, в том числе гироскопического и стабилизирующего эффектов, геометрии велосипеда, скорости и распределения массы позволяет неуправляемому велосипеду сохранять вертикальное положение.

Вдохновившись этой работой, мы построили динамическую модель многотельной системы, чтобы продемонстрировать самобалансирующееся движение велосипеда, управляемого велосипедистом без помощи рук.

Положение велосипеда в разные моменты времени.

Многотельная модель велосипеда

Чтобы обеспечить чистое качение колес и ограничить их проскальзывание в трех направлениях, нам нужны три граничных условия.


Модель колеса с отображением направлений, в которых ограничены перемещения.

Используются следующие ограничения: Отсутствие проскальзывания в прямом направлении:

{\frac{d\bold{u}}{dt}.\bold{e}_{2}=r\frac{d\bold{\theta}_s}{dt}}

Отсутствие проскальзывания в поперечном направлении:

\frac{d\bold{u}}{dt}.\bold{e}_{3}=r\frac{d\bold{\theta}_{l}}{dt}

Отсутствие проскальзывания перпендикулярно поверхности контакта с землей:

\frac{d\bold{u}}{dt}.\bold{e}_{4}=0

где \bold{e}_{2} , \bold{e}_{3} , and \bold{e}_{4} — мгновенное направление (наклонная ось), поперечное направление (ось вращения) и нормаль к поверхности контакта (\bold{e}_{4}=\bold{e}_{2} \times\bold{e}_{3}) , соответственно;

\frac{d\bold{u}}{dt} — поступательная скорость движения; r — радиус колеса; \frac{d\bold{\theta}_{s}}{dt} — угловая скорость вращения; \frac{d\bold{\theta}_{l}}{dt} — угловая наклонная скорость.

Поскольку применить указанные граничные условия к скорости невозможно, они дискретизируются во времени и накладываются следующим образом:

(\bold{u}-\bold{u}_{p}).\bold{e}_{2}=r(\bold{\theta}_{s}-\bold{\theta}_{sp})

(\bold{u}-\bold{u}_{p}).\bold{e}_{3}=r(\bold{\theta}_{l}-\bold{\theta}_{lp})

(\bold{u}-\bold{u}_{p}).\bold{e}_{4}=0

где \bold{u}_{p} , \bold{\theta}_{sp} и\bold{\theta}_{lp} — это вектор смещения, угол вращения и наклона в предыдущий момент времени, соответственно.

В дискретных граничных условиях, обеспечивающих отсутствие проскальзывания, используется результат расчета положения колеса на предыдущем шаге по времени. Положение жесткого тела, вращение и мгновенные положения осей на предыдущем шаге по времени сохраняются с помощью глобальных уравнений и узла Previous Solution в нестационарном решателе.

Моделирование движения самобалансирующегося велосипеда

Для анализа мы выбрали велосипед, угол наклона руля которого составляет 18°. Начальное значение скорости велосипеда составляет 4.6 м/с. Через 1 секунду после начала движения на велосипед в течение очень короткого периода времени воздействует сила 500 Н. Под действием силы велосипед отклоняется от прямолинейной траектории движения в заданном направлении.

В течении первой секунды велосипед движется вперед вдоль первоначально заданного направления с постоянной скоростью. Затем боковое усилие вызывает отклонение. Отметим, что велосипедист не держит руки на руле и не может управлять балансом велосипеда. Что происходит дальше? Мы можем заметить, что как только велосипед начинает наклоняться, руль поворачивается в направлении падения. Корректировка положения руля при падении приводит к восстановлению равновесия велосипеда.

Велосипед продолжает двигаться вперед, и в процессе движения начинает наклоняться в обратную сторону. Этот наклон меньше по величине, а движение руля точно следует за наклоном с небольшим отставанием. Такое колебание вправо-влево продолжается и в конечном итоге затухает. Велосипед движется вперед в строго вертикальном положении и слегка увеличивает скорость. Колебания руля, углы поворота и угловая скорость постепенно снижаются и затухают.

Движение велосипеда на ровной поверхности при отклонении от прямолинейного движения. Стрелка показывает наклон велосипеда.

Результаты расчета углов наклона и поворота руля (слева) и относительная угловая скорость (справа) велосипеда.

Проведение анализа устойчивости

Таким образом, мы узнали, что велосипед может самобалансироваться. Исследование показало, что невозможно выделить какой-то один параметр, определяющий устойчивость велосипеда. Конструкция велосипеда, распределение массы и скорость движения — все эти факторы влияют на устойчивость. Чтобы лучше понять это явление, мы провели дополнительный анализ для изучения влияния двух параметров — начальной скорости и наклона рулевой оси. Мы использовали описанную выше модель велосипеда с углом наклона оси руля 18° и начальной скоростью 4.6 м/с в качестве исходной конфигурации и провели параметрический анализ влияния этих двух факторов.

Различные значения начальной скорости

Велосипед не может оставаться в строго вертикальном положении, когда стоит на месте. Мы изменяли скорость движения от 2.6 м/с до 6.6 м/с с шагом 1 м/с, чтобы оценить влияние этого параметра. В диапазоне 2.6–3.6 м/с велосипед наклоняется слишком сильно и неустойчив. На скорости 5.6 м/с скорость наклона стремится к нулю, но сам угол наклона приобретает ненулевое значение. Хотя данная конфигурация устойчива, велосипед будет двигаться по кругу с небольшим наклоном. На 6.6 м/с наклон и угол поворота руля увеличиваются со временем, делая движение неустойчивым.

Неустойчивое Устойчивое Неустойчивое
2.6 м/с 3.6 м/с 4.6 м/с 5.6 м/с 6.6 м/с

Устойчивый случай соответствует скорости 5.6 м/с (слева), а неустойчивый — скорости 6.6 м/с (справа).

Угол поворота руля

Узел рулевого управления очень важен для самобалансировки велосипеда. Если велосипедом невозможно управлять (например, если руль заклинило), то велосипед не сможет компенсировать наклон, поэтому он в итоге упадет. В этой связи, поворот оси руля, который контролирует уход вилки, также влияет на самобалансировку велосипеда.

Чтобы проанализировать влияние поворота оси руля на устойчивость велосипеда, мы изменяли углы поворота руля от 15° до 21° с шагом 1°. При угле в 15° наклон и угол поворота руля увеличиваются со временем, что делает данную конфигурацию неустойчивой. Велосипед устойчив в диапазоне от 16° до 19° и неустойчив для больших углов. При значениях поворота больше 19°, наклон и угол поворота колеблются, и эти осцилляции со временем возрастают, что приводит к потере устойчивости.

В этой публикации мы рассказали, как смоделировать движение неуправляемого самобалансирующегося велосипеда с помощью модуля Динамика многотельных систем (Multibody Dynamics) в COMSOL Multiphysics. Мы продемонстрировали, как реализовать ограничения на проскальзывание на жестком колесе через уравнения, а затем объединили эти ограничения с многотельной моделью велосипеда. Затем мы проанализировали влияние начальной скорости и поворота оси на устойчивость велосипеда. Оценив эти параметры, мы увидели, что велосипед может сохранять устойчивость в одной конфигурации и терять ее в другой.

Самобалансировка велосипеда является следствием целого ряда факторов. С помощью нашего анализа и в соответствии с предыдущими исследованиями мы продемонстрировали, что устойчивость велосипеда связана с его способностью "подруливать" в направлении наклона.

Моделирование движения заключается в искусственном воспроизведении процесса движения физическими или математическими методами, например, с помощью ЭВМ.

В качестве примеров физических методов моделирования могут быть названы исследования движения на различных макетах элементов дороги или полигонные испытания, где создаются искусственные условия, имитирующие реальное движение транспортных средств. Простейшим примером физического моделирования может служить распространенный метод проверки возможностей маневрирования и постановки на стоянку различных транспортных средств с помощью их моделей на заданной площади, изображенной в уменьшенном масштабе.

Наибольшее значение имеет математическое моделирование (вычислительный эксперимент), основывающееся на математическом описании транспортных потоков. Благодаря быстродействию ЭВМ, на которых осуществляется такое моделирование, удается в минимальное время провести исследование влияния многочисленных факторов на изменения различных параметров и их сочетания и получить данные для оптимизации управления движением (например, для регулирования на пересечении), которые невозможно обеспечить натурными исследованиями.

В основу вычислительного эксперимента с применением ЭВМ легло понятие модели объекта, то есть математическое описание, соответствующее данной конкретной системе и отражающее с требуемой точностью поведение ее в реальных условиях. Вычислительный эксперимент дешевле, проще натурного, легко управляем. Он открывает путь к решению больших комплексных проблем и оптимальному расчету транспортных систем, научно обоснованному планированию исследований. Недостаток вычислительного эксперимента состоит в том, что применимость его результатов ограничена рамками принятой математической модели, построенной на основе закономерностей, выявленных с помощью натурного эксперимента.

Изучение результатов натурного эксперимента позволяет получить функциональные соотношения и теоретические распределения, исходя из которых строится математическая модель. Математическое моделирование в вычислительном эксперименте целесообразно разделить на аналитическое и имитационное. Процессы функционирования систем при аналитическом моделировании описываются с помощью некоторых функциональных отношений или логических условий. Учитывая сложность процесса дорожного движения, для упрощения приходится прибегать к серьезным ограничениям. Однако, несмотря на это, аналитическая модель позволяет находить приближенное решение задачи. При невозможности получения решения аналитическим путем модель может исследоваться с применением численных методов, позволяющих находить результаты при конкретных начальных данных. В этом случае целесообразно использовать имитационное моделирование, подразумевающее применение ЭВМ и алгоритмическое описание процесса вместо аналитического.

Широкое применение имитационное моделирование может найти для оценки качества организации движения, а также при решении различных задач, связанных с проектированием автоматизированных систем управления дорожным движением, например, при решении вопроса об оптимальной структуре системы. К числу недостатков имитационного моделирования относят частный характер получаемых решений, а также большие затраты машинного времени для получения статически достоверного решения.

Следует отметить, что в настоящее время область моделирования транспортных потоков находится в стадии формирования. Различные аспекты моделирования исследуются в МАДИ, ВНИИБД, НИИАТ и других организациях.

Раздел программы: “Формализация и моделирование”.

Тема урока: “Моделирование движения”.

Тип урока: урок изучения нового материала.

Вид урока: комбинированный.

Технология: личностно-ориентированная.

Время проведения: второй урок по теме “Моделирование графических объектов”.

Цели урока:

  • развитие представлений о моделировании как методе познания;
  • формирование системно-информационного подхода к анализу окружающего мира;
  • формирование общеучебных и общенаучных навыков работы с информацией.

Задачи урока:

  • Воспитательная – развитие познавательного интереса, воспитание информационной культуры, воспитание умения четко организовать самостоятельную работу.
  • Учебная – изучить и закрепить прием моделирования динамических объектов.
  • Развивающая – развитие системно-конструктивного мышления, расширение кругозора.

Методы: словесные, наглядные, практические.

Организационные формы работы: фронтальные, индивидуальные.

Материально-техническая база:

  • презентация “Моделирование движение”;
  • комплекс: демонстрационный экран и компьютер с ОС Windows-9x с установленным MS Office 2000;
  • компьютеры с программной средой Turbo Pascal 7.0.

Межпредметная связь : математика.

1. Подготовка к уроку

Для урока подготовлена презентация с помощью Power Point с целью визуализации информации по ходу объяснения нового материала. (Приложение1.ppt)

План урока:

Содержание этапа урока Вид и формы работы
1. Организационный момент Приветствие
2. Мотивационное начало урока Постановка цели урока.
Фронтальный опрос
3. Изучение нового материала Использование слайдов, работа в тетради
4. Этап закрепления, проверки полученных знаний Практическая работа: компьютерный эксперимент по проверке программы
5. Этап систематизации, обобщения изученного Самостоятельная работа за компьютером: компьютерный эксперимент по исследованию модели.
Работа в тетради
6. Подведение итогов, домашнее задание Работа в тетради

Ход урока

2. Организационный момент

3. Мотивационное начало урока. Постановка цели урока

Учитель: На прошлом занятии мы строили статичное изображение.

Вопрос: Какая модель называется статической? Какая модель называется динамической?

Ответ: Модель, описывающая состояние объекта, называется статической. Модель, описывающая поведение объекта, называется динамической.

Учитель: Сегодня продолжим тему построение изображений, но уже в динамике, т.е. объект будет изменять свое положение на плоскости во времени. Начну с демонстрации имеющейся у меня копилки программ, которые хорошо иллюстрируют тему сегодняшнего урока. (Начинается показ через запуск программ на ЯП Паскаль “Хаотичное движение” , “Полет в космосе” , “Движение колеса” (Приложение2.pas, Приложение3.pas, Приложение4.pas). Изучение модели движения мы и посвятим сегодняшний урок.

В классе на экране тема урока “Моделирование движения”.

Запишите тему сегодняшнего урока.

Учитель: Условие задачи зафиксируйте в тетради.

Для решения задачи смоделируем процесс движения сначала через описательную модель, затем формализованную и, наконец, компьютерную, чтоб можно было реализовать модель на компьютере.

Для начала давайте обсудим вопрос, что значит создать анимацию (иллюзию движения какого-либо объекта)?

Обсуждение. Заслушивание всех вариантов ответов, вплоть до невозможных.

Предполагаемый ответ: Если это как в мультипликации, то, наверное, это должно быть в виде набора статичных изображений сменяющих друг друга через какое-то время.

Учитель: Хорошо.

4. Изучение нового материала

Словесную описательную модель нашей задачи можно сформулировать так:

Учитель вслух комментирует описательную модель, просит учащихся зафиксировать ее в тетради.

Учитель: Перейдем к формализованной модели, и раз это изображение, то воспользуемся системой координат компьютера и схематично изобразим, как это должно выглядеть.

Учащиеся фиксируют эту модель в тетрадь.

Учитель: А вот как это будет выглядеть на экране (слайд выполнен с анимацией, круг проделывает движение слева на право).

Учащиеся наблюдают.

Учитель: Запишем словесный алгоритм реализации нашей модели. Ясно, что для повторения многократного изображений круга каждый раз в новой точке экрана понадобится цикл.

Вопрос: Какой цикл лучше использовать?

Ответ: For-To-Do.

Вопрос: Какая процедура поможет нам нарисовать круг белого цвета? Черного цвета?

Ответ: SetColor(15) и Circle(X,Y,R), затем SetColor(0) и Circle(X, Y, R).

Вопрос: Как осуществить задержку времени на пример на 100 м/сек?

Ответ: Delay(100).

Учитель: Правильно.

Демонстрируем слайды с 8 по 10. Учащиеся сверяют свои ответы с правильными.

Учитель: А теперь запишите всю программу целиком у себя в тетради.

Выдерживаем паузу 5–7 минут. Затем даем возможность свериться с образцом.

| Моделирование в электронных таблицах

Уроки 17 - 18
Моделирование в электронных таблицах

Моделирование движения тела под действием силы тяжести

Примеры движения под действием силы тяжести хорошо известны. Это и падение тела с некоторой высоты, и движение тела, брошенного вверх с некоторой скоростью, и движение тела, брошенного под углом к горизонту. Если в таких задачах не учитывать силу сопротивления воздуха, то все перечисленные виды движения описываются известными формулами. Но задачи, в которых сопротивление воздуха учитывается, не менее интересны.

ЗАДАЧА 3.24. Поражение цели

I этап. Постановка задачи

ОПИСАНИЕ ЗАДАЧИ

Мальчики играют в бадминтон. Порыв ветра подхватил волан и отнес его на ветви дерева. Предстоит нелегкая задача - достать волан. Задачу можно решить несколькими способами. Каждый из способов имеет свои плюсы и минусы.

Можно, например, залезть на дерево. Но это очень опасное занятие: ветки дерева чем выше, тем тоньше. Велика вероятность падения. Можно спилить дерево. Но, видимо, еще никто не опробовал такой путь решения задачи. Если бы все выбирали такой способ решения задачи, то давно бы уже не осталось ни одного дерева. Можно ждать, когда волан упадет сам, подхваченный очередным порывом ветра. Наиболее часто волан пытаются сбить камнем. Выберем эту модель поведения и мы. Тем более, что нам известны законы движения тела.

ЦЕЛЬ МОДЕЛИРОВАНИЯ

Исследовать движение тела, брошенного под углом к горизонту. Подобрать начальные значения скорости и угла бросания так, чтобы брошенное тело попало в цель.

ФОРМАЛИЗАЦИЯ ЗАДАЧИ

Примечание. Чтобы задать точность попадания , надо учитывать размеры тела.

Точность попадания должна быть не более половины наименьшего геометрического размера тела.

Так, например, если цель - волан размером в диаметре примерно 7 см, то = 3,5 см. Если цель - баскетбольное кольцо диаметром 40 см, то = 20 см. Если цель - аэростат высотой 5 м, то = 2,5 м.

II этап. Разработка модели

ИНФОРМАЦИОННАЯ МОДЕЛЬ

Характеристики объектов и процесса представим в виде таблицы.

Параметры движения тела представлены на рисунке 3.4. Движение тела, брошенного под углом к горизонту, описывается формулами


КОМПЬЮТЕРНАЯ МОДЕЛЬ

Для моделирования выберем среду табличного процессора. В этой среде табличная информационная и математическая модели объединяются в таблицу, которая содержит три области:

♦ исходные данные;
♦ промежуточные расчеты;
♦ результаты.

1. Заполните область исходных данных по образцу.

Столбцы А, В, С, D, Е, F заполнить сверху вниз аналогичными формулами.

2. Заполните область промежуточных рассчетов и результатов.


ПЛАН ЭКСПЕРИМЕНТА

ТЕСТИРОВАНИЕ

ЭКСПЕРИМЕНТ 1

Исследовать движение тела.

ЭКСПЕРИМЕНТ 2

Исследовать изменение движения тела при изменении начальной скорости.

ЭКСПЕРИМЕНТ 3

Исследовать изменение движения тела при изменении угла бросания.

ЭКСПЕРИМЕНТ 4

Изменяя начальную скорость и угол бросания, исследовать характер движения тела и его положение по отношению к цели.

ЭКСПЕРИМЕНТ 5

Изменяя исходную начальную скорость и угол, подобрать значения так, чтобы брошенное тело попало в цель с заданной точностью.

ПРОВЕДЕНИЕ ИССЛЕДОВАНИЯ

ТЕСТИРОВАНИЕ

1. Заполните столько строк расчетной таблицы, пока координата у не станет меньше нуля.

2. Сравните результаты тестового расчета с результатами, приведенными в примере расчета. Ниже в таблице представлено несколько строк с результатами расчетов по приведенным исходным данным.

3. По столбцам В и С построить диаграмму движения. Пример представлен на рисунке 3.6. Для построения диаграммы возьмите столько расчетных значений, чтобы кривая пересекла горизонтальную ось х .

4. Как определить, сколько расчетных точек надо взять для построения диаграммы?

Вывод. Для построения диаграммы надо взять расчетные значения, у которых координата y больше 0, и одно отрицательное значение.

ЭКСПЕРИМЕНТ 1. Исследование движения тела

1. По диаграмме тестового примера опишите, как движется тело.

2. Объясните, как по диаграмме определить точку наивысшего подъема тела.

3. Объясните, что на диаграмме обозначает точка пересечения кривой с горизонтальной осью х. Как по таблице расчетов определить эту точку?

4. Определите по диаграмме, на каком расстоянии от точки броска тело упадет на землю.

5. Определите по таблице расчетов:

Наибольшую высоту подъема;
время движения до наивысшей точки;
расстояние от точки броска до точки падения на землю;
время движения до падения.

В свободной области электронной таблицы запишите результаты исследования движения тела по предложенному образцу.

6. Введите другой вариант исходных данных, заполните для них таблицу результатов эксперимента.

ЭКСПЕРИМЕНТ 2. Зависимость движения тела от начальной скорости (угол бросания неизменный)

1. Изменяя начальную скорость от 5 до 20 м/с, проследите, как изменяется наибольшая высота подъема (координата у)

2. Проследите, как изменяется дальность полета (координата x) при увеличении начальной скорости.

3. Проведите расчеты для некоторого угла и результаты исследований сведите в таблицу (таблица 2), составленную на свободном поле электронной таблицы.

4. Запишите в таблицу выводы по результатам эксперимента: как изменяется высота и дальность полета при изменении начальной скорости (при неизменном угле бросания)?


ЭКСПЕРИМЕНТ 3. Зависимость движения тела от угла бросания (начальная скорость движения неизменна)

1. Проведите расчеты по модели, увеличивая угол бросания от 5° до 85° и оставляя неизменной начальную скорость (например, 15 м/с).

2. Проследите изменение высоты подъема (координата у) при увеличении угла бросания, начальная скорость неизменна.

3. Проследите изменение дальности полета (координата x) при увеличении угла бросания.

4. Результаты расчетов сведите в таблицу на свободном поле электронной таблицы (таблица 3). 

5. Запишите в таблицу выводы по результатам эксперимента: как изменяется высота и дальность полета при изменении угла бросания (при неизменной начальной скорости)?

ЭКСПЕРИМЕНТ 4. Исследование характера движения тела и его положения по отношению к цели

На рисунке 3.7 показаны варианты расположения кривой движения тела по отношению к цели. Их можно охарактеризовать следующим образом:

1. Тело при движении не достигает высоты, на которой расположена цель, и падает на землю, не достигая X ц .

2. Тело при движении не достигает высоты, на которой расположена цель, но падает на землю дальше X ц .

3. Тело при движении поднимается выше Y ц , но падает на землю, не достигая X ц .

4. Тело при движении поднимается выше Y ц и падает на землю дальше X ц .

В столбцах D, Е и F вычисляются величины S x , S y , S, которые показывают расположение тела по отношению к цели.

1. Исследуйте, что означает знак S x и S y в различные моменты времени. 

Вывод.

2. Исследуйте, как изменяется S при движении тела.

Вывод. Полное расстояние до цели сначала уменьшается, а потом увеличивается.

3. Подберите исходные данные (начальную скорость и угол бросания), соответствующие вариантам движения тела, представленным на рисунке 3.7, на свободном поле электронной таблицы (таблица 4).


ЭКСПЕРИМЕНТ 5. Подбор исходных значений для попадания в цель

Прежде всего заметим, что существует бесконечное множество вариантов исходных данных для попадания в цель. Наша задача - подобрать один вариант.

1. По столбцу F определите наименьшее значение S . В этот момент тело ближе всего пролетает к цели.

2. Постройте столбец G анализа попадания. Будем считать, что тело попало в цель, если расстояние до цели стало меньше заданной точности (ячейка $D$10) . Для этого в ячейку G16 введите формулу =ЕСЛИ(F16<$D$10; «попал»; «мимо») .

3. Изменяйте исходные данные, чтобы получить наилучшее приближение к цели.

4. Результаты исследования запишите на свободном поле электронной таблицы (таблица 5).

5. Подберите еще один набор исходных данных, при котором тело попадет в цель «навесом», то есть после прохода наивысшей точки подъема.

6. Измените координаты цели и подберите значения начальной скорости и угла бросания для нового положения цели.

Результаты и выводы, полученные в экспериментах, оформите в виде отчета в текстовом документе. В отчете приведите ответы на следующие вопросы:

1. Как движется тело, брошенное под углом к горизонту?
2. Как определить наивысшую точку подъема?
3. Как определить дальность полета?
4. Как изменяется наибольшая высота подъема при увеличении начальной скорости и неизменном угле броска?
5. Как изменяется дальность полета при увеличении начальной скорости и неизменном угле броска?
6. Как изменяется наибольшая высота подъема при увеличении угла бросания и неизменной начальной скорости?
7. Как изменяется дальность полета при увеличении угла бросания и неизменной начальной скорости?
8. Как по расчетам определить положение тела по отношению к цели в каждый момент времени? Как это определить по таблице расчетов?
9. Как изменяется расстояние от тела до цели при движении и как это определить по таблице расчетов?

ЗАДАЧА 3.25*. Движение парашютиста

* Задача повышеной сложности

I этап. Постановка задачи

ОПИСАНИЕ ЗАДАЧИ

Парашютист при падении к земле испытывает действие силы тяжести и силы сопротивления воздуха. Экспериментально установлено, что сила сопротивления зависит от скорости движения: чем больше скорость, тем больше сила. При движении в воздухе эта сила пропорциональна квадрату скорости с некоторым коэффициентом сопротивления k , который зависит от конструкции парашюта и веса человека R сопр = kV 2 .Каково должно быть значение этого коэффициента, чтобы парашютист приземлился на землю со скоростью не более 8 м/с , не представляющей опасности для здоровья?

Определите цели моделирования и проведите формализацию задачи.

II этап. Разработка модели

ИНФОРМАЦИОННАЯ МОДЕЛЬ

Составьте информационную модель самостоятельно.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

На рисунке 3.8 указаны силы, действующие на парашютиста. Согласно второму закону Ньютона движение под действием сил можно записать равенством. Проецируем это равенство на ось движения, подставим выражение для силы сопротивления воздуха mа = mg - kV 2 .

Получим формулу для вычисления ускорения

Будем рассчитывать скорость и расстояние, которое пролетел парашютист через равные промежутки времени △t . Формула для вычисления моментов времени имеет вид: t i+1 + t i + △t . 

где V i - скорость в начале промежутка (V o - начальная скорость). Скорость в конце промежутка (и, соответственно, в начале следующего) вычисляется по формуле равноускоренного движения

Расстояние, которое пролетел парашютист, равно сумме расстояния, пройденного к началу очередного промежутка времени (S i ), и расстояния, пройденного на этом промежутке:


КОМПЬЮТЕРНАЯ МОДЕЛЬ

Для моделирования выберем среду электронной таблицы. В этой среде информационная и математическая модели объединяются в таблицу, которая содержит три области:

♦ исходные данные;
♦ промежуточные расчеты;
♦ результаты.

1. Заполните область исходных данных.

2. Заполните расчетные столбцы А, В, С, D, в которых вычисляются параметры движения парашютиста:

Время;
скорость;
расстояние;
ускорение.

3. Введите формулы в расчетные ячейки. Пример заполнения расчетной таблицы: 


III этап. Компьютерный эксперимент


ПЛАН ЭКСПЕРИМЕНТА

ТЕСТИРОВАНИЕ

Провести тестовый расчет компьютерной модели по данным, приведенным в таблице.

ЭКСПЕРИМЕНТ 1

Исследовать движение тела под действием силы тяжести и сопротивления воздуха.

ЭКСПЕРИМЕНТ 2

Подобрать значение коэффициента сопротивления k для безопасного приземления парашютиста. 

ЭКСПЕРИМЕНТ 3

Исследовать зависимость скорости, ускорения от начальной скорости движения.

ЭКСПЕРИМЕНТ 4

Исследовать, как изменяется расстояние полета до стабилизации скорости падения.

ПРОВЕДЕНИЕ ИССЛЕДОВАНИЯ

ТЕСТИРОВАНИЕ

1. Сравните результаты тестового расчета с результатами, приведенными в примере расчета. Пример тестового расчета:

2. Постройте диаграмму изменения скорости, ускорения и расстояния в зависимости от времени.

ЭКСПЕРИМЕНТ 1. Исследование движения тела с учетом сопротивления воздуха

1. Определите по диаграмме и по таблице, как изменяется с течением времени скорость движения парашютиста. Через сколько секунд наступает стабилизация скорости падения?

2. Определите по диаграмме и по таблице, как изменяется с течением времени ускорение парашютиста.

3. Определите по диаграмме и по таблице, какое расстояние пролетит парашютист до стабилизации скорости движения. Результаты поместите на свободном поле в электронной таблице.

4. Измените шаг времени (0,1 с) и определите скорость стабилизации движения, расстояние полета до стабилизации. Результаты исследования приведите в таблице.

ЭКСПЕРИМЕНТ 2. Подбор коэффициента сопротивления

Изменяя значение коэффициента k (ячейка СЗ) , подберите скорость стабилизации движения, безопасную для приземления тренированного человека (8 м/с) .

ЭКСПЕРИМЕНТ 3. Исследование стабилизации скорости и расстояния в зависимости от начальной скорости

Парашютист, выпрыгнув из самолета, некоторое время летит в свободном падении, набирает достаточно большую скорость движения и только потом раскрывает парашют.

1. Измените значение начальной скорости (10 м/с) .

2. По таблице расчетов определите, как изменится:

Начальное ускорение;
скорость стабилизации;
расстояние полета до стабилизации скорости.

3. Результаты эксперимента запишите на свободном поле электронной таблицы. Сделайте вывод.

Результаты эксперимента 3:

Примечание. Обратите внимание, как изменяется начальное ускорение. Учтите, что оно не может быть большим, так как ускорение более 3g (30 м/с2) вызывает очень большие перегрузки.

IV этап. Анализ результатов моделирования

По результатам компьютерного эксперимента ответить на следующие вопросы:

1. Как изменяется скорость парашютиста с течением времени?
2. Как изменяется скорость парашютиста при изменении коэффициента сопротивления?
3. Каким должен быть коэффициент сопротивления, чтобы парашютист опустился на землю со скоростью 8 м/с?
4. Как изменяется скорость движения и как зависит установившаяся скорость равномерного движения парашютиста от начальной скорости?
5. Через сколько секунд после начала движения скорость парашютиста можно считать установившейся?
6. На какой высоте от земли парашютист должен раскрыть парашют, чтобы приземлиться с заданной скоростью.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

3.26. Баскетболист.

Пользуясь построенной моделью движения тела, брошенного под углом, рассчитать, с какой начальной скоростью и под каким углом нужно бросить баскетбольный мяч, чтобы попасть в кольцо.

При расчетах учесть следующие условия:

Начальная скорость мяча при броске может изменяться в пределах до 15 м/с;
координаты кольца у = 3 м, х = 0,5 ÷ 7 м;
точность попадания связана с диаметром кольца и равна = 20 см;
мяч должен попасть в кольцо «навесом», то есть после прохода наивысшей точки подъема.

Измените математическую и компьютерную модели движения тела, брошенного под углом, так, чтобы по ним можно было рассчитать движение тела, брошенного с некоторой начальной высоты y 0

3.27. Спасение утопающего.

С какой скоростью и под каким углом надо бросить с борта спасательного судна круг утопающему? При расчетах учесть следующие условия:


расстояние утопающего от корабля;
точность попадания равна = 0,5 м;
угол бросания может быть отрицательным;
высоту борта корабля над уровнем моря.

3.28. Акробаты.

Многие видели в цирке такой акробатический номер. Один акробат встает на прыжковую доску с одной стороны, второй прыгает на другой конец. С какой начальной скоростью и под каким углом должен взлететь вверх первый акробат, чтобы опуститься точно на плечи третьего участника номера? При расчетах учесть следующие условия:

Начальная скорость может изменяться в пределах до 10 м/с;
высоту и удаление третьего акробата;
точность попадания равна = 0,1 м.


© 2024
deti-autism.ru - Здоровье в ваших руках